

MORBIDITY AND MORTALITY WEEKLY REPORT

377 Human Salmonella Isolates-United States, 1980
Epidemiologic Notes and Reports
379 Enterovirus-Associated IIIness-Florida, Arizona, Tennessee, 1981
386 Measles-U.S. Counties
Notice to Readers
387 Follow-up on Influenza Vaccine

Surveillance Summary

Human Salmonella Isolates - United States, 1980

In 1980, 30,004 isolations of salmonellae (including Salmonella typhi) from humans were reported to CDC, a decrease of 3.6% from 1979.

The decrease in isolates was not confined to a single state or region. Decreases occurred in all the New England states, as well as Alaska, Georgia, Nevada, New York, Oklahoma, Oregon, and Washington. Isolates either increased or remained approximately the same in all other states. No 1 particular serotype accounted for the decrease. S. heidelberg, S. enteritidis, and S. oranienburg all showed notable declines, while S. agona increased 27.1\%. S. enteritidis declined in New England and New York, but almost doubled in Washington. S. heide/berg declined in New England, New York, Oregon, and Washington. S. newport declined in New York, Oklahoma, and Washington. However, S. agona more than doubled in Massachusetts, New Jersey, and Tennessee, accounting for more than half of the increase in that serotype. The 10 most frequently isolated serotypes accounted for more than two-thirds of the total isolates (Table 1).

TABLE 1. The 10 serotypes of Salmonella most frequently isolated from humans, United States, 1980

Serotype	Number of isolates	Percentage	Median age of patients (years)
S. typhimurium*	10,443	34.8	9
S. heidelberg	1,975	6.6	3
S. enteritidis	1,904	6.3	18
S. newport	1,651	5.5	14
S. infantis	1,428	4.8	4
S. agona	1,402	4.7	7
S. saint-paul	757	2.5	20
S. montevideo	665	2.2	17
S. typhi	605	2.0	24
S. oranienburg	503	1.7	14
Subtotal	21,333	71.1	12
Others	8,671	28.9	
Total	30,004	100.0	11

[^0]Salmonella lsolates - Continued
The age distribution of persons from whom isolates were obtained (Figure 1) followed a well-established pattern: the rate was highest for infants approximately $2-3$ months of age, decreased rapidly through early childhood, and then held fairly constant from approximately age 8 through the adult years. Isolation rates for those under 20 were higher for males than for females, but for persons from 21 through approximately age 70, females showed a slightly higher reported isolation rate.

For most serotypes, the median age of infected patients has been consistent for the 18 years that surveillance records have been maintained. In 1980, 43 of the 605 isolates of S. typhi were from carriers, 199 from infected patients, and the rest were undesignated. The median age of carriers was 63 years; of infected patients, 21 years; and of those unspecified, 19 years. Any variation in the median age of persons from whom a particular serotype is isolated may indicate differences in the vehicles, the infectious dose, or other variables.
Reported by Statistical Sucs Br, Enteric Diseases Br, Bacterial Diseases Div, Center for Infectious Diseases, $C D C$.
Editorial Note: This report is based on the Salmonella Surveillance Activity conducted by the Association of State and Territorial Epidemiologists and by CDC. It is a passive,

FIGURE 1. Rate of reported isolates of Salmonella, by age of patient, United States, 1980

*PER IOO,000 POPULATION

Salmonella /solates - Continued

laboratory-based system which receives weekly reports from the 50 states and the District of Columbia and regular summaries from the U.S. Department of Agriculture. These reports do not distinguish between clinical and subclinical infections, or between chronic and convalescent carriers. Many selective factors affect whether or not an infection will be reported. Despite such restrictions, these data provide a basis for comparison with past and future tabulations.

The decrease in the number of reported isolates of various serotypes is probably artifactual, reflecting the fact that several states have either begun charging for serotyping or are no longer doing it routinely. Even with these difficulties in the system, ongoing analysis of this surveillance information has led directly to the identification of new vehicles of transmission and interstate outbreaks. Also, surveillance data have served as indicators of the effectiveness of various public health measures. With the advent of new epidemiologic tools such as plasmid typing of Salmonella strains, it will be even more important to maintain Salmonella surveillance.

Epidemiologic Notes and Reports

Enterovirus-Associated IIIness - Florida, Arizona, Tennessee, 1981

Outbreaks of enterovirus-associated meningitis have been reported recently from Palm Beach County, Florida; Tucson, Arizona; and regions of Tennessee.

Palm Beach County: Routine county surveillance has uncovered 65 patients with aseptic meningitis and 3 with encephalitis hospitalized between April 5 and July 26, 1981; an additional 23 probable cases are being followed. The number of cases has increased this year compared with previous years. In 1979, 12 cases were reported during the same time period and in 1980, 21 cases were reported. Nearby counties have not reported similar increases. To date, enteroviruses have been isolated from 12 patients. Seven cases were associated with echovirus 30,2 cases with echovirus 9,1 case with echovirus 14, and 2 cases with Coxsackie A4. One of the encephalitis cases was in a 7 -monthold, previously healthy infant initially diagnosed as a victim of sudden infant death syndrome after he was found dead in his crib 1 morning. Coxsackie A4 was isolated from brain tissue obtained at autopsy.

Tucson: In June 1981, 4 cases of aseptic meningitis were reported from a 130 -unit apartment complex in the northeastern section of the city. Following that report, a survey of virology laboratory records and hospital charts identified an unusual number of aseptic meningitis cases. Cases began increasing in May. One hundred ten cases were identified, 85 cases through the virology laboratory and 25 additional cases from hospital reviews. New cases are still being reported. Patients resided throughout Tucson; no clustering by section of the city was found. Nonpolio enteroviruses were isolated from 20 cases. Ten isolates were subtyped; 8 were echovirus 30, 1 Coxsackie B1, and 1 Coxsackie B5. All patients were <40 years of age with a median age of 12 years. Thirty-three percent of patients were $\leqslant 5$ years old, and 24% were between 21 and 30 years old. Seventy-three percent (29/40) of all cases over 21 years of age were females.

Enterovirus - Continued

Tennessee: Six counties have reported cases of aseptic meningitis. Fifty cases have been hospitalized since May 1, 1981. Data were collected from 30 cases reported from Williamson County. Cases had temperatures ranging from 99.8 F to 104.2 F (37.7. 40.1 C) with a mean of $101.3 \mathrm{~F}(38.5 \mathrm{C})$. Lumbar puncture was performed on 19 of 30 cases. The cerebrospinal fluid (CSF) white blood cell (WBC) count ranged from 17 to 912 WBCs $/ \mathrm{mm}^{3}$ (mean 197); CSF protein level ranged from 15 to $100 \mathrm{mg} \%$ (mean 42), and CSF glucose level, from 44 to $86 \mathrm{mg} \%$ (mean 62). Echovirus 30 was isolated from 5 pa tients. No other enteroviruses were isolated. Two patients reported complications. Both had aseptic meningitis followed 2 weeks later by descending unilateral paresis, one with cranial nerve involvement, the other with moderate paresis of 1 side of the face, 1 arm and 1 leg. Additional data were collected from 42 Williamson County families, each of which had at least 1 case. Thirty-eight secondary cases of enteroviral-like illness were identified. The secondary attack rate was highest in the <5-year age group. Seventy-two percent of these family members reported symptoms. Predominant symptoms included headache (84%), fever (74%), nausea (58%), vomiting (39%), diarrhea (16%), severe headache with stiff neck (13\%), exanthem and/or enanthem (11\%), and sore throat (11\%).
(Continued on page 385)

TABLE I. Summary - cases of specified notifiable diseases, United States [Cumulative totals include revised and delayed reports through previous weeks.]

DISEASE	31 nt WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ 19761980 \end{gathered}$	Cumblative. First 31 WEEKS		
	$\begin{gathered} \text { August } 8 \\ 1981 \end{gathered}$	$\begin{gathered} \text { Au gust } 2 \\ 1980 \end{gathered}$		$\begin{gathered} \text { August } 8 \\ 1981 \end{gathered}$	$\begin{gathered} \text { August } 2 \\ 1980 \end{gathered}$	$\begin{gathered} \text { MEDIAN } \\ \text { 1976-1980 } \end{gathered}$
Aseptic meningitis	307	229	215	3.307	2.666	2.044
Brucellosis	4	5	5	89	113	113
Chickenpox	1,010	167	528	165,433	155.720	155.720
Diphtheria	-	-	1	3	2	55
Encephalitis: Primary (arthropod-borne \& unspec.)	33	$3{ }^{6}$	38	536	447	447
Post-infectious	1	8	6	50	130	136
Hepatitis, Viral: Type \mathbf{B}	532	351	271	12.010	10.146	0.980
Type A	543	551	551	14.976	16.279	17.451
Type unspecified	232	253	144	6,691	6,664	5.244
Malaria	17	39	19	021	1.180	382
Measles (rubeola)	32	129	155	2,546	12.563	22.776
Meningococcal infections: Total	48	32	31	2.310	1.787	1.635
Civilian	47	31	31	2.297	1.774	1.613
Military	1	1	-	13	13	16
Mumps	51	55	125	2.943	6.805	12.916
Pertussis	43	59	51	640	816	785
Rubella (German measles)	58	33	63	1.649	3.085	10.427
Tetanus	2	3	1	36	48	37
Tuberculasis	436	492	618	15,914	15,900	17.305
Tularemia	8	14	5	130	115	88
Typhoid fever	13	16	13	284	25.	258
Typhus fever, tick-borne (Rky. Mt. spotted)	51	59	53	103	691	630
Venereal diseases: Gonorrhea: Civilian	20,757	20.929	21,163	586,488	571.711	573.920
Military	625	391	574	17.206	15.814	16,134
Syphilis, primary \& secondary: Civilian	581	474	440	17.631	15.250	14.085
Military	3	5	5	229	185	182
Rabies in animals	134	121	74	4.296	4.067	1.859

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1981		CUM. 1981
Anthrax	\square	Poliomyalitis: Total	1
Batulism	34	Paralytic	1
Cholera	3	Psittacosis (Tex. 1)	71
Conganital rubella syndrome	7	Rabies in man	1
Leprosy (III. 2, Calif. 1, Hawaii 1)	157	Trichinosis (N.J. 1, Md. 2)	100
Leptaspirosis Plague	23 5	Typhus fever, flea borne (endemic, murine) (Tex. 2)	30

[^1]TABLE III. Cases of specified notifiable diseases, United States, weeks ending August 8, 1981 and August 2, 1980 (31st week)

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
August 8, 1981 and August 2, 1980 (3lst week)

REPORTING AREA	meastes (RuBEOLA)			MENINGOCOCCAL INFECTIONSTOTAL			MUMPS		PERTUSSIS	fubella		TETANUS
	1981	$\begin{gathered} \text { CUM. } \\ 1981 \end{gathered}$	$\begin{aligned} & \text { cum. } \\ & 1980 \end{aligned}$	1981	cum. 1981	$\begin{aligned} & \text { CUM } \\ & 1980 \end{aligned}$	1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \end{aligned}$	1981	1981	$\begin{aligned} & \text { CuM. } \\ & 1981 \end{aligned}$	cum. 1981
UNITED STATES	32	2,546	12,563	48	2.310	1.787	51	2,943	43	58	1,649	36
NEW ENGLAND	-	75	667	3	146	107	-	142	1	-	105	2
Maine	-	5	33	1	22	5	-	27	-	-	33	-
N.H.	-	4	330	-	16	5	-	17	-	-	35	-
Vt.	-	1	226	-	6	13	-	6	-	-	-	-
Mass.	-	57	54	-	33	36	-	39	-	-	25	-
R.I.	-	-	2	-	13	7	-	20	1	-	-	-
Conn.	-	8	22	2	56	41	-	33	-	-	12	2
MID. ATLANTIC	9	783	3,696	8	320	308	16	524	6	2	197	2
Upstate N.Y.	1	206	667	1	102	104	1	91	3	-	91	1
N.Y. City	1	65	1,141	2	53	76	3	68	-	1	49	1
N.J.	1	54	819	1	73	67	-	83	2	-	46	-
Pa.	6	454	1.063	4	92	61	12	282	1	1	11	-
E.N. CENTRAL	7	84	2.316	6	282	226	15	828	7	8	344	7
Ohio	-	15	355	2	105	69	2	128	1	-	3	1
Ind.	5	15	90	-	40	35	1	93	6	4	122	2
III.	-	23	330	3	69	60	2	164	-	3	82	-
Mich.	2	30	230	1	64	49	-	297	-	1	34	3
Wis.	2	1	1.311	1	4	13	10	146	-	-	103	1
W.N. CENTRAL	-	6	1,318	-	102	73	1	177	2	-	76	3
Minn.	-	2	1,084	-	36	18	-	8	2	-	6	2
lowa	-	1	20	-	18	9	-	41	-	-	4	-
Mo.	-	1	64	=	30	32	1	29	-	-	3	1
N. Das.	-	-	-	-	1	1	-	-	-	-	-	-
S. Dak.	-	-	-	-	4	4	-	1	-	-	-	-
Nebr.	-	1	83	-	-	-	-	3	-	-	1	-
Kans.	-	1	67	-	13	9	-	95	-	-	62	-
S. ATLANTIC	4	339	1.852	10	520	425	9	413	10	2	131	7
Del.	-	-	3	-	4	2	-	9	-	-	1	-
Md.	-	2	71	-	36	42	2	80	-	-	1	-
D.C.	-	1	-	-	1	1	-	1	-	-	-	-
Va .	-	6	298	1	65	38	2	115	1	-	6	-
W. Va	-	8	9	1	20	14	3	69	-	-	22	-
N.C.	-	4	128	-	75	81	-	13	1	-	5	2
S.C.	-	-	151	2	68	50	-	10	-	-	8	2
Ga.	-	109	799	3	87	72	-	33	4	-	35	1
Fla.	4	209	381	3	164	125	2	83	4	2	53	2
E.S. CENTRAL	-	4	327	7	170	162	-	70	2	-	28	2
K \mathbf{y}.	-	-	52	3	48	51	-	33	1	-	17	-
Tann.	-	2	169	-	47	44	-	20	1	=	10	-
Ala.	-	2	22	1	56	42	-	15	-	-	1	2
Miss.	-		84	3	19	25	-	2	-	-	-	-
W.S CENTRAL	3	181	528	10	387	186	-	168	6	1	143	5
Ark.	3	1	16	1	21	14	-	1		-	2	1
La.	-	2	11	1	93	66	-	4	1	-	9	2
Okla.	-	E	769	1	33	17	-	-	-	-	-	1
Tex.	3	882	132	7	240	89	-	163	5	1	132	1
MOUNTAIN	1	33	448	-	75	62	2	105	-	4	78	2
Mont.	-	-	2	-	6	3	2	8	-	-	4	-
Idaho	-	1	-	-	3	4	-	4	-	-	1	-
Wya.	-	-	-	-	1	2	-	1	-	4	7	-
Colo.	-	9	23	-	32	15	-	42	-	-	27	-
N. Mex.	-	0	11	-	6	7	-	-	-	-	5	-
Ariz.	1	5	351	-	17	10	-	23	-	-	19	1
Utah	-	-	41	-	5	2	-	16	-	-	4	1
Nev.	-	10	0	-	5	19	-	11	-	-	9	
PACIFIC	8	331	1.011	4	308	238	8	516	9	41	547	6
Wash.	-	3	174	2	58	44	-	134	2	33	94	-
Orag.	-	3	-	-	46	42	-	59	-	-	31	-
Calif.	8	323	827	2	193	147	6	297	7	7	412	6
Alaska	-	3	5	2	7	5	-	7	-	1	1	-
Hawaii	-	2	5	-	4	-	2	19	-	-	9	-
Guam	Na	4	5	-	-	1	NA	6	Na	Na	1	-
P.R.	11	258	110	-	10	9	2	107	2	Na	3	3
V.I.	1	24	6	-	1	1	2	4	2	-	1	3
Pac. Trust Terr.	Na	1	6	-	-	-	NA	8	ma	Na	1	-

NA: Not available.
All delaved reports and corrections will be included in the following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
August 8, 1981 and August 2, 1980 (3lst week)

heporting area	TUBERCULOSIS		$\begin{array}{\|c\|} \hline \text { TULA. } \\ \text { REMIA } \end{array} \left\lvert\, \begin{aligned} & \text { CUM. } \\ & \hline 1981 \\ & \hline \end{aligned}\right.$	TYPHOID FEVER		TYPHUS FEVER (Tick-borne) (RMSF)		venereal diseases (Civilian)						RABIES (in Animals)		
			gonormhea			SYPHILIS (Pri. \& Sec.)										
	1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \end{aligned}$		1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \end{aligned}$			1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$	1981	CUM. 1981	$\begin{aligned} & \hline \text { CUM. } \\ & 1980 \\ & \hline \end{aligned}$	1981		$\begin{aligned} & \text { CUM. } \\ & 1981 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1980 \\ & \hline \end{aligned}$
UNITED STATES	436	15,914		130	13	288	51	803	20,757	586.488	571.711	581	17,631	15,250	4,296	
NEW ENGLAND	15	450	1	-	12	1	7	497	14.574	14,337	13	370	316	18		
Maine		26	$\underline{-}$	-	1	-	-	42	745	827	-	2	4	8		
N.H.	-	13	-	-	-	-	-	22	528	487		11	1	2		
Vt		14	-	-	-	\square	-	13	250	323		13	5			
Mass.	10	262	-	-	7	1	5	181	5.898	5,958	1	245	179	3		
R.I.	1	27	-	-	$\underline{-}$	\pm	-	29	765	919	-	21	19			
Conn.	4	108	1	-	4	-	2	210	6.388	5,823	6	18	108	5		
Mid. atlantic	58	2,519	10	1	40	3	32	2,748	10,055	61.138	89	2,668	2.191	48		
Upstate N.Y.	12	439	10	-	10	3	12	278	11.393	11.194	-	$24 ?$	179	37		
N.Y. City	16	975	-	$\bar{\square}$	26	-	2	1.050	29.510	23,831	58	1.803	1,438	-		
N.J.	17	527	-	1	8	-	8	830	13.402	10,975	11	361	268	7		
Pa .	13	578	-	-	4	-	10	590	15.750	15,138	20	462	306	4		
E.N. CENTRAL	69	2,040	1	-	16	1	34	2.178	86.287	87.229	46	1,137	1,410	573		
Ohio	15	401	-	-	2	-	28	678	29.399	23.038	12	161	227	47		
Ind.	16	164	-	-	-	-	2	250	7.834	8,355	1	113	114	55		
III.	24	815	-	-	6	-	3	219	22,044	27,603		588	791	412		
Mich.	9	546	1	-	6	1	1	730	18,960	19.794	31	217	225	6		
Wis.	5	114	-	-	2	$-$	-	301	8.050	0.439	2	58	53	53		
W.N. CENTRAL	14	564	16	1	12	5	33	1,063	28.115	26.054	16	350	188	1. 839		
Minn.	-	95	-	-	2	1	1	57	4.350	4.345	9	127	65	324		
lowa	-	58	-	-	2	-	3	111	3.080	2,857	-	14	9	589		
Mo.	10	251	15	-	3	3	18	618	13.050	11.242	7	184	95	144		
N. Dak.		21	-	-	-	-	-	10	385	382	-	4	3	296		
S. Dak.	1	43	-	-	1	-	-	30	768	812	-	2	2	210		
Nabr.	-	18	1	-	2	-	2	78	2.140	2,072	-	4	6	136		
Kans.	3	78	-	1	2	1	9	159	4,342	4.344	-	15	8	140		
S atLANTIC Del.	73	3. 517	9	6	43	26	465	5.035	144.603 2.286	142,972 1.962	168	4,666	3.657 10	263		
Md.	16	353	1	-	12	-	44	8888	16,462	15,106	11	349	253	13		
D.c.	6	224	-	-	1	-	-	230	8,706	9,888	17	380	264	-		
Va.	8	360	-	-	1	6	79	399	13.201	12,605	11	423	334	46		
W. Va.	2	116	-	-	4	-	4	69	2,199	1,862	-	16	14	13		
N.C.	16	612	1	-	1	15	198	733	22.353	20,516	11	354	247	2		
SC.	13	332	3	-	-	5	80	559	13.976	13,717	9	309	211	17		
$\mathrm{Ga}_{\mathrm{Fla}}$	$\stackrel{\rightharpoonup}{2}$	563	4	2	4		50	1.064	30.022	27.397	42	1.202	1,048	121		
Fla	12	910	-	4	20	-	8	1.074	35.398	39.919	67	1,626	1,276	50		
Es. CENTRAL	38	1,406	5	-	5	3	79	2.723	48.805	46.853	32	1,139	1.258	276		
Ky.	9	366	2	-	-	-	2	116	6,094	6.926	2	53	82	84		
Тепп.	6	463	3	-	1	2	53	662	18,345	16,732	6	432	531	147		
Ala	14	384	-	-	2	1	9	1,613	15.009	13.903	18	321	267	45		
Miss.	9	193	-	-	2	-	15	332	9,357	9.292	6	333	318			
W.S CENTRAL	57	1,801	61	3	39	8	127	2.704	78,071	73.611	122	4,283	2,964	762		
Ark.	5	188	35	1	2	4	27	192	5.702	5,675	4	83	2.91	100		
La	6	313	2	-	2	\cdots	-	441	13.230	13.445	1	983	120	26		
Okja	8	214	14	-	3	2	74	306	8.253	7.318	1	99	59	150		
Tax.	38	1,086	10	2	32	2	26	1.765	50.888	47,173	116	3.118	2,094	486		
MOUNTAIN	18	457	23	-	20	3	21	835	23.085	22,184	5	473	369	130		
Mont.	-	23	5	-	4	-	10	42	851	823	-	11	1	74		
Idaho	-	6	3	-	-	1	5	87	1.022	981	2	17	14	1		
Wyo.	-	1	1	-	$-$	1	4	NA	515	660	-	7	8	6		
Colo.	-	50	5	-	5	-	-	218	6.212	5,954	2	144	97	17		
N. Mex.	8	85	1	-	-	-	-	92	2.505	2,779	1	87	62	20		
Ariz.	9	215	-	-	10	$=$	-	192	7,034	6.036	-	105	129	10		
Utah	1	34	7	-	1	1	1	29	1,074	1,020	-	16	10	-		
Nev.	-	37	1	-	-	-	1	175	3,872	3,931	-	86	48	2		
PACIFIC	94	3,160	4	2	93	1	5	2.974	92.893	97.393	90	2,545	2,897	387		
Wash.	15	241	1	-	3	-	1	230	7,359	8. 152	-	68	154	6		
Oreg.	12	121	-	-	4	-	-	168	5.560	6.581	3	59	69	5		
Calif.	62	2,672	3	2	85	1	4	2.378	75.819	78.363	87	2. 369	2.566	362		
Alaska	-	39	$-$	$=$	-	$\underline{-}$	-	95	2.330	2,343	-	6	7	14		
Hawail	5	87	-	-	1	-	-	103	1.825	1,954	-	43	105			
Guam	NA	7	-	Na	-	Na	-	ma	47	82	Na	-	4	-		
P.R.	,	183	-	-	4	-	-	76	1.939	1,537	11	399	323	46		
V.I.	-	1	-	-	6	-	-	3	117	108	1	15	10	-		
Pat. Trust Terr.	Na	38	-	NA	-	NA	-	NA	211	247	Na	-	-	-		

[^2]All delayed reports and corrections will be included in the fallowing week's cumulative totals.

TABLE IV. Deaths in 121 U.S. cities, * week ending August 8. 1981 (3lst week)

REPORTING AHEA	ALl Causes. by age (years)						$\left\|\begin{array}{l} \text { P\& I }=: \\ \text { TOTAL } \end{array}\right\|$	REPORTING AREA	ALL CAUSES, BY AGE (YEARS)						$\begin{aligned} & \text { pslat } \\ & \text { TOTA } \end{aligned}$
	$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	$\geqslant 65$	45-64	25-44	1-24	<1			$\underset{\text { AGES }}{\text { ALL }}$	≥ 65	45-64	25-44	1.24	<1	
NEW ENG LAND	641	436	137	43	7	18	43	S. ATLANTIC	1.063	618	274	79	42	48	27
Boston. Mess.	184	111	43	19	4	7	13	Atlanta, Ga.	128	76	30	12	6	4	4
Bridgaport, Conn.	54	34	14	3	-	3	4	Baltimore, Md.	105	57	39	3	5	-	3
Cambridga, Mass.	16	13	3	-	-	-	3	Charlotte, N.C.	41	23	12	5	1	-	-
Fall River, Mass.	30	19	8	2	-	1	1	Jacksonville, Fla.	95	57	23	7	6	2	1
Hartlord, Conn.	49	33	10	2	2	2	1	Miami, Fla.	104	50	27	11	7	9	1
Lowell, Mass.	25	18	6	1	-	-	3	Norfolk, Va.	59	32	11	4	2	9	3
Lynn, Mass.	17	14	2	1	-	-	-	Richmond, Va.	64	28	23	1	4	8	3
Naw Bedtiord, Mass.	23	20	3	-	-	-	4	Savannah, Ga.	47	29	10	4	3	1	4
Naw Haven, Conn.	54	38	11	4	-	1	3	St. Petersburg, Fla.	94	84	6	1	2	3	1
Providence, R.I. 5	60	40	15	3	-	2	4	Tampa, Fla.	72	45	13	10	2	2	2
Somerville, Mass.	8	5	2	1	-	-	-	Washington, D.C.	202	104	65	19	5	9	5
Springtield, Mass.	39	30	5	3	-	1	3	Wilmington, Del.	52	33	15	2	,	1	-
Waterbury, Conn.	22	17	4		1	-	1								
Worcester, Mess.	60	44	11	4	-	1	3								
								E.S. CENTRAL Birmingham, Ala.	658 98	390 55	174 31	45	22	27	21
MID. ATLANTIC	2,453	1.609	537	162	71	74	77	Chattanooga, Tenn.	74	45	18	6	2	3	1
Albany, N.Y.	54	34	10	3	3	4	-	Knoxvilla, Tenn. 8	46	33	9	2	1	1	-
Allentown, Pa - $\mathrm{E}^{\text {a }}$	18	15	3	-	-	$\stackrel{-}{2}$	-	Louisvilla, Ky.	88	51	21	6	4	6	1
Buffalo, N.Y.	100	69	18	7	4	2	13	Memphis, Tenn.	150	97	36	10	5	2	6
Carnden, N.J.	38	30	6	-	2	-	-	Mobile. Ala.	62	33	16	6	3	4	4
Elizabeth, N.J.	22	15	5	2	-	-	-	Montgomery, Ala.	51	32	13	2	2	2	3
Erie, Pa. \dagger	28	16	8	1	3	$\bar{\square}$	1	Nashville, Tenn.	89	44	30	9	1	5	3
Jersay City, N.J.	44	30	8	2	1	3	1	Nashille, Ton.							
N.Y. City, N.Y.	1.282	846	267	94	37	38	32								
Nawark، N.J.	59	33	19	4	1	2	1	W.S. CENTRAL	1.417	181	358	147	75	56	41
Patersom, N.J.	22	14	5	2	$\stackrel{-}{-}$	1	-	Austin, Tex.	64	38	15	\%	2	1	1
Philadelphia, Pa. \dagger	317	192	79	27	8	11	12	Baton Rouga, La.	57	37	11	3	5	1	2
Pittsburgh, Pa. \uparrow	92	59	25	5	1	2	4	Corpus Christi, Tox.	25	13	6	2	2	2	2
Reasing, Pa.	30	22	4	2	2	-	5	Dailas, Tex.	186	108	42	19	13	4	4
Rochestar, N. Y.	113	87	18	3	2	3	6	El Paso, Tex.	61	31	19	4	3	4	5
Schenectady, N.Y.	32	25	4	1	2	-	-	Fort Werth, Tex.	81	45	22	9	2	3	5
Scranton, Pa. 1	31	19	11	1	-	-	1	Hauston. Tex.	419	196	117	52	33	21	7
Syracuse, N.Y.	93	54	27	5	4	7	1	Little Rock, Ark.	53	29	12	4	3	5	3
Trenton, N.J.	37	21	10	1	4	1	-	New Orleans, La.	203	117	58	18	3	7	2
Utica, N.Y.	17	11	5	-	1	-	-	San Antonio, Tex.	152	87	31	20	7	7	7
Yonkars, N.Y.	24	17	5	2	$\underline{-}$	-	-	Shreveport, La.	49 67	34	9	5 3	7	1	1
								Tulsa, Okla.	67	46	16	3	2	-	
E.N. CENTRAL	2. 123	1,267	556	145	85	70	57								
Akron, Ohio	51	32	13	1	2	3	-	MOUNTAIN	585	341	130	62	42	10	27
Canton, Ohio	43	31	6	1	5	a	2	Albuquerque, N. Mex.	70	37	16	14	3	-	3
Chicago. III.	502	275	144	45	20	18	7	Colo. Springs, Colo.	33	24	6	1	1	1	4
Cincinnati, Ohio	256	160	11	11	6	8	23	Denvex, Colo.	115	69	22	18	6	-	2
Clevaland, Ohio	155	89	39	12	a	7	4	Las Vegas, Nev.	69	33	24	10	2	-	-
Columbus, Ohio	81	49	24	6	1	1	5	Ogden, Utah	20	12	6	1		1	3
Dayton, Ohio	81	47	27	6	-	1	2	Phoanix, Ariz.	126	80	24	10	7	5	2
Datroit, Mich.	239	123	67	22	17	10	2	Puablo, Colo.	10	6	3	-	1	-	4
Evansville. Ind.	43	31	5	1	-	2	1	Salt Lake City, Utah	59	29	12	2	13	3	-
Fort Wayne. Ind.	58	32	13	9	4	-	3	Tueson, Ariz.	83	51	17	6	9	-	9
Gary, Ind. 8	16	11	2	2	1	-	-	Tuson, Aliz.							
Grand Rapids, Mich.	47	34	9	-	2	2	-								
Indianapolis, Ind.	142	81	41	10	5	5	1	PACIFIC	1.665	1,038	364	137	60	66	75
Madison. Wis.	37	24	7	1	2	3	-	Berkeley, Calif.	24	13	5	2	2	2	-
Milwaukee. Wis.	116	76	26	6	6	2	-	Fresno. Calif.	49	32	8	5	1	3	2
Paoria. III.	32	21	5	2	1	3	1	Glendala, Calif.	23	19	1	2	1	-	1
Rockford, III.	46	33	10	2	-	1	-	Honolulu, Hawaii	68	32	22	1	4	7	5
South Bend, Ind.	30	15	11	2	1	1	2	Long Beach, Calif.	87	48	31	4	-	4	7
Toleda, Ohio	85	59	18	4	2	2	2	Los Angeles, Calif.	473	303	100	46	14	10	13
Yaungstown, Ohio	63	44	14	2	2	1	2	Oakland, Calif.	67	48	8	5	1	5	6
								Pasadena, Calif.	29	22	4	2	1	-	3
								Portland, Orag.	108	69	26	5	4	4	2
W.N. CENTRAL	611	404	125	32	26	22	14	Sacramento, Calif.	66	36	18	5	3	4	5
Des Moines, Iowa	60	36	18	4	2	-	1	San Diego, Calif.	163	93	32	15	14	9	5
Duluth, Minn.	28	21	4	1	2	-	1	San Francisco, Calif.	145	87	31	17	3	7	3
Kansas City, Kans.	19	11	3	2	3	-	1	San Jose, Calif.	147	86	38	13	6	4	16
Kansas City, Mo.	100	68	20	2	6	3	2	Seattle, Wash.	134	87	27	13	4	3	6
Lincoln, Nebr.	36	25	9	2	3	3	4	Spakane, Wash.	50	36	8	2	1	3	-
Minneapolis, Minn.	62	41	13	2	3	3	1	Tacoma, Wesh.	34	27	5	-	1	1	3
Omaha. Nebr.	77	48	19	3	2	5	-								
St. Louis, Mo.	134	87	27	6	5	8	2								
St. Paul, Minn.	55	44	5	3	2	1	-	TOTAL	11.216	6,884	2,655	852	430	391	382
Wichita, Kans.	40	23	7	7	1	2	2								

[^3]it Total includes unknown ages.
EData not available this week. Figures are estimates based on average percent of regional totals.

Enterovirus - Continued

Reported by C Eider, RN, MPH, C Williams, RN, S Stryker, MD, C Brumback, Palm Beach County Health Dept: E Wyner, E Buff, Virus Unit (Jacksonville), RA Gunn, MD. State Epidemiologist, Florida Dept of Health and Rehabilitation Sucs; B Porter, MPA, Pima County (Tucson) Health Dept; G Rav, MD, Virologv Laboratory, University of Arizona College of Medicine; PM Hotchkiss, DVM, Acting State Epidemiologist, J Doll, MD, Arizona State Dept of Health Sucs; B Harvey, RN, Williamson County Hospital; J Moss, MD, C Stilwell, MD, K Rhea, MD, Williamson County; C Reves, RH Hutcheson Jr, MD, State Epidemiologist, Tennessee State Dept of Public Health; Viral Diseases Div, Center for Infectious Diseases, CDC.

Editorial Note: Enterovirus-associated cases of aseptic meningitis are reported during the summer months each year. Cases are usually identified beginning in May, generally peak in August, and decrease in late October. Communitywide and regional outbreaks are common and may last for 1 or 2 months. Mild clinical illnesses are reported by other community residents. Outbreaks most often are caused by multiple agents with 1 serotype predominating.

Echovirus 30 is the serotype most frequently isolated from cases reported in the outbreaks in 1981. Echovirus 30 was first recognized in association with an aseptic meningitis outbreak in Scotland in 1959 (1). Similar outbreaks were reported in New York in 1959 (2), Ontario in 1959-1960 (3), and Minnesota in 1960 (4). In 1968, 431 cases of echovirus 30 associated aseptic meningitis were reported to CDC and constituted 64\% of the aseptic meningitis cases characterized by isolation of an enterovirus (5). Between 1970 and 1977, sporadic cases of aseptic meningitis associated with echovirus 30 were reported. Beginning in 1978 the number of cases of echovirus 30 associated aseptic meningitis increased from an average of 7 cases per year (range 1 to 12) to 49 cases in 1979. In 1980, echovirus 30 was the third most frequently reported enterovirus associated with aseptic meningitis. Coxsackie B3 and echovirus 11 were the first and second most frequent agents, respectively.

Echovirus 30, like many of the enteroviruses, causes illness ranging from minor febrile illness to paresis. In 1980, echovirus 30 associated illnesses included encephalitis, aseptic meningitis, carditis, respiratory tract illness, and gastroenteritis. Echovirus 30 isolates were reported from all areas of the country, but $42 \%(50 / 120)$ of all echovirus 30 isolates were from the South Atlantic states of North Carolina, Georgia, and Florida, representing 26% of the enterovirus isolates from those states. Twenty-one percent of echovirus 30 isolates were from the Mid-Atlantic Region, but these isolates constituted only $5 \%(26 / 529)$ of the nonpolio-enteroviruses from that region.

Since 1970, stool specimens have been the most frequent source of isolation. Between 1970 and $1980,40 \%(196 / 496)$ of the echovirus 30 isolates were from stool specimens or rectal swabs, 21% (104/496) from CSF, 19\% (96/496) from throat, 16% ($82 / 496$) from tissues, $1 \%(3 / 496)$ from nasopharynx, 1% from urine, 5% from other sources. The presence of an enterovirus in the alimentary tract, however, does not constitute proof of an etiologic role of the virus in clinical illness. Isolation of the virus from specific tissues that are presumably infected, or from CSF -in the case of meningitis-is needed.

References

1. Duncan IB. Aseptic meningitis associated with a previously unrecognized virus. Lancet 1960;2: 470-1.
2. Plager H. Decher W. A newly-recognized enterovirus isolated from cases of aseptic meningitis. American Journal of Hygiene 1963;77:26-8.
3. Kelen A. Lesiak J, Labzoffsky NA. Aseptic meningitis due to Frater type virus in Ontario. Can Med Assoc J 1963,89:29-30.
4. Kleinman H, Cooney MK, Nelson CB, Owen RR, Boyd L, Swanda G. Aseptic meningitis and paralytic disease due to newly recognized enterovirus. JAMA 1964;187:90-5.
5. Likosky WH, Emmons RW, Davis LE, et al. U.S. cases in 1968: epidemiology of echovirus 30 aseptic meningitis. Health Services Reports 1972;87:638-42.

Epidemiologic Notes and Reports

Measles - U.S. Counties

From 1977 through the first half of 1981, a substantial decline occurred in the number of counties reporting measles in the United States (Table 2). In 1977, 1,438 (45.7\%) of the 3,144 counties in the United States reported measles. In 1980, a provisional total of $715(22.7 \%)$ counties reported measles. During the first 26 weeks of 1981 (Figure 2), a provisional total of 247 (7.9%) counties reported measles, compared with a provisional total of 616 (19.6\%) counties during the same period in 1980.
Reported by Surveillance and Assessment Br, Immunization Div, Center for Prevention Sucs, CDC.
Editorial Note: The sharp decline in the number of counties reporting measles follows the National Childhood Immunization Initiative, which began in April 1977, and the Measles Elimination Program, which began in October 1978. More than 90% of the counties in the United States reported no measles during the first half of 1981, indicating that measles transmission has been interrupted for prolonged periods in most of the nation. Continued application of the current measles-elimination strategy $(1,2)$ should result in further reductions in transmission.

References

1. CDC. Goal to eliminate measles from the United States. MMWR 1978;27:391.
2. Hinman AR, Brandling-Bennett AD, Nieburg PI. The opportunity and obligation to eliminate measles from the United States. JAMA 1979;242:1157-62.

FIGURE 2. U.S. counties* reporting measles, first 26 weeks (ending July 4), 1981

*Also included, but not depicted, 1 county in Alaska, and 2 in Hawaii. Black areas indicate counties reporting 1 or more cases of measles.

Measles - Continued
TABLE 2. Counties reporting measles, United States, January 1, 1977-July 4 (26th week), 1981*

Year	Number of countiest	Percentage of counties
1977	1,438	45.7
1978	984	31.3
1979	851	27.1
1980	715	22.7
1980, first		
26 weeks	616	19.6
1981, first		7.9
26 weeks	247	

*1980 and 1981 data are provisional.
$\mathrm{t}=3,144$.

Notice to Readers

Follow-up on Influenza Vaccine

The antigen content of influenza virus vaccine for the 1981-82 season was recently increased from $7 \mu \mathrm{~g}$ to $15 \mu \mathrm{~g}$ of hemagglutinin of each of the component strains-A/Brazil/78 (H1N1), A/Bangkok/79 (H3N2), B/Singapore/79-per 0.5-ml dose (1). Most of the data on local and systemic reactions and antibody response accumulated from the extensive clinical studies of 1976 and 1978 showed that an increase in antigenic potency of vaccine to approximately $15 \mu \mathrm{~g}$ of each hemagglutinin (total $45 \mu \mathrm{~g}$) was associated with an improved antibody response without an increase in reaction rates. Most of these studies were based on a $0.5-\mathrm{ml}$ dose.

Since publication of the ACIP statement (1), CDC has had numerous inquiries concerning using available vaccine from last season (1980-81) because that vaccine contains hemagglutinin of each of the same strains as the current vaccine. However, there are no data on reactivity or antibody response when the dosage volume is increased to 1 ml , as would be required to administer $\sim 15 \mu \mathrm{~g}$ of hemagglutinin with last season's vaccine. To assure the administration of vaccine of recommended potency, without unpredictable reactions, the Food and Drug Administration and CDC advise the use only of the vaccine prepared for the 1981-82 season; the use of 1 ml of influenza virus vaccine produced in 1980 is not recommended.
(Continued)

[^4]Influenza Vaccine - Continued)
Reported by the Bur of Biologics, Food and Drug Administration; and the Surveillance and Assessment Br, Immunization Div, Center for Prevention Svcs, CDC.
Reference

1. Immunization Practices Advisory Committee. Influenza vaccine 1981-82. MMWR 1981;30:279-82, 287-8.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE / CENTERS FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Paid
U.S. Department of HHS

Director, Centers for Disease Control William H. Foege, M.D.
Director, Epldemiology Program Office Philip S. Brachman, M.D.
Editor Michael B. Gregg, M.D.
Managing Editor
Anne D. Mather, M.A.
Matnematical Statisticlan Keewhan Chol, Ph.D.

[^0]: *Includes S. typhimurium var. copenhagen.

[^1]: All delayed reports and corrections will be included in the following week's cumulative totals.

[^2]: NA: Not available.

[^3]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more. A death is
 reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 - - Pneumonia and influenza
 - Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.

[^4]: The Morbidity and Mortality Weekly Report, circulation 89,000, is published by the Centers for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

 The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Attn: Editor, Morbidity and Mortality Weekly Report, Centers for Disease Control, Atlanta, Georgia 30333.

 Send mailing list additions, deletions and address changes to: Attn: Distribution Services, Management Analysis and Services Office, 1-SB-419, Centers for Disease Control, Atlanta, Georgia 30333. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

